Development and response of a coupled catchment fan system under changing tectonic and climatic forcing
نویسندگان
چکیده
[1] Sediment fans are a potentially useful and underexploited recorder of Earth’s climatic and tectonic history, but historical observations have led to conflicting views on the importance of tectonic, climatic, and lithologic variables in controlling fan morphology and deposition. A one-dimensional model of a sediment fan and its associated catchment is used to explore the sensitivity of such simple sediment routing systems to perturbations in fault slip and precipitation rates. A transport-limited catchment is coupled to a fan whose surface slope is set by the balance between catchment sediment efflux and the available tectonically generated basin accommodation. Rock uplift rate is spatially variable across the model space. Increasing the fault slip rate, or decreasing the precipitation rate, leads to an increase in fan slope, temporary back-stepping of the fan toe, and a pronounced angular unconformity. Conversely, a decrease in slip rate, or an increase in precipitation rate, results in a decrease in fan slope, and progradation and eventual stabilization of the fan toe. Once perturbed, the system evolves toward a new equilibrium state with time constants of 0.5 to 2 Myr; these response times are insensitive to slip rate but are strongly dependent on precipitation rate. Variations in fan slope are well described by a dimensionless parameter that expresses equilibrium slope as a function of slip rate, precipitation rate, system size, and catchment lithology. This parameter holds promise as a predictive tool in inverting the morphology of natural fans for environmental variables.
منابع مشابه
The study of the role of Quaternary tectonic and climatic factors on the geomorphological evolution of Meshkin Shahr depression fan systems
Aims & Backgrounds: The Quaternary period is considered as the interval of climatic oscillations (glacial and interglacial) coupled with tectonic episodes. Therefore, tectonics and climate have simultaneously governed the evolution of Quaternary alluvial fans. Unraveling the tectonic and climatic factors under varied depositional systems is therefore the fundamental issue in understanding the e...
متن کاملFormation of waterfalls by intermittent burial of active faults
Waterfalls commonly exist near bounding faults of mountain ranges, where erosional bedrock catchments transition to depositional alluvial fans. We hypothesize that aggradation on alluvial fans can bury active faults, and that the faults accumulate slip in the subsurface to produce a bedrock scarp. Following entrenchment of the alluvial fan, the scarp can be exposed as a waterfall. To explore th...
متن کاملOrogen response to changes in climatic and tectonic forcing
Despite much progress, many questions remain regarding the potential dynamic coupling between atmospheric and lithospheric processes in the long-term evolution of mountain belts. As a complement to recent efforts to discover the interrelationships among climate, topography, erosion, and rock deformation under conditions of mass-flux steady state, we explore orogen response to changes in climate...
متن کاملAlluvial fan facies of the Qazvin Plain: paleoclimate and tectonic implications during Quaternary
The present research focuses on a detailed facies description and interpretation of five alluvial fans of the Qazvin Plain. Beside the tectonic activity that leads to the localization of the fans on the northern margin of the Qazvin Plain, the climate has a significant role in the occurrence of their facies. The alluvial fans are divided into three facies groups: group 1, group 2, and group 3. ...
متن کاملClimate forcing of fluvial system development: an evolution of ideas
Starting from traditional ideas on the climatic steering of fluvial system dynamics, it appears that there are different kinds of climatic influences on system dynamics. They vary from direct climatic forcing (like peak precipitation) to indirect (like permafrost) and partial forcing (like vegetation). Vegetation (or its absence), and not directly climate, is considered as the main cause of flu...
متن کامل